DNA bending by the silencer protein NeP1 is modulated by TR and RXR.
نویسندگان
چکیده
NeP1 binds to the F1 silencer element of the chicken lysozyme gene and, in the presence of TR, v-ERBA or RAR, synergistically represses transcriptional activity. This repression involves a silencing mechanism acting independently of the relative promoter position. Here we show that NeP1 alone can induce a significant directed bend on DNA. The chicken homologue of human NeP1, CTCF, shows identical binding and bending properties. In contrast, the isolated DNA binding domain of CTCF efficiently binds DNA, but fails to confer bending. Similarly, the TR-RXR hetero- or homodimer, binding adjacent to NeP1 at the F2 sequence, do not show significant DNA bending. The binding of the T3 ligand to TR changes neither the magnitude nor the direction of the NeP1 induced bend. However, when all factors are bound simultaneously as a quaternary complex, the TR-RXR heterodimer changes the location of the bend center, the flexure angle and the bending direction.
منابع مشابه
Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF.
The transcriptional repressor negative protein 1 (NeP1) binds specifically to the F1 element of the chicken lysozyme gene silencer and mediates synergistic repression by v-ERBA, thyroid hormone receptor, or retinoic acid receptor. Another protein, CCCTC-binding factor (CTCF), specifically binds to 50-bp-long sequences that contain repetitive CCCTC elements in the vicinity of vertebrate c-myc ge...
متن کاملSick euthyroid syndrome is associated with decreased TR expression and DNA binding in mouse liver.
Infection is associated with low serum thyroid hormones and thyrotropin levels. Here we demonstrate that infection also reduces thyroid hormone receptor (TR) expression. In gel shift experiments, retinoid X receptor (RXR)/TR DNA binding was reduced in mouse liver by 60 and 77%, respectively, 4 and 16 h after lipopolysaccharide (LPS) administration. Surprisingly, LPS did not decrease either TR-a...
متن کاملThyroid hormone receptor-induced bending of specific DNA sequences is modified by an accessory factor.
Transcriptional regulation by thyroid and steroid hormone receptors requires their recognition and binding of specific DNA sequences. However, little is known about the mechanisms whereby DNA bound receptors regulate transcription. In the present study, we examined the effects of thyroid hormone receptor (TR) binding on DNA conformation using various TR recognition sites contained within sets o...
متن کاملThyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor.
A subset of nuclear receptors, including those for thyroid hormone (TR), retinoic acid, vitamin D3, and eicosanoids, can form heterodimers with the retinoid X receptor (RXR) on DNA regulatory elements in the absence of their cognate ligands. In a mammalian two-hybrid assay, we have found that recruitment of a VP16-RXR chimera by a Gal4-TRbeta ligand-binding domain fusion is enhanced up to 50-fo...
متن کاملDeterminants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation.
Chromatin disruption and transcriptional activation are both thyroid hormone-dependent processes regulated by the heterodimer of thyroid hormone receptor and 9-cis retinoic acid receptor (TR-RXR). In the absence of hormone, TR-RXR binds to nucleosomal DNA, locally disrupts histone-DNA contacts and generates a DNase I-hypersensitive site. Chromatin-bound unliganded TR-RXR silences transcription ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 14 شماره
صفحات -
تاریخ انتشار 1996